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Abstract— A new decoder is being developed by the Jet
Propulsion Laboratory for NASA's Deep Space Network.
This unit will decode the new turbo codes, which have
recently been approved by the Consultative Committee for
Space Data Systems (CCSDS). Turbo codes provide up to
0.8 dB improvement in E,/N, over the current best codes
used by deep space missions.

The new decoder is being implemented in software running
on commercial Digital Signal Processor (DSP) chips,
removing the need to design complicated and expensive
hardware as was the case with the previous generation of
codes. The decoder will time-tag the data frames, perform
frame synchronization in the symbol domain (as opposed to
the current bit domain synchronization), decode the turbo
coded frames, and output the decoded bits in the CCSDS
Standard Formatted Data Units format. The decoder is
initially designed to operate up to 365 kbps, but will
increase in rate as DSP clock rates increase. The
implementation will go operational in October, 2003.
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1. INTRODUCTION

In 1994, a new class of error correcting codes was
developed [1]. These codes provide up to an 0.8 dB
improvement over the current best codes used by deep space
missions. The Consultative Committee for Space Data
Systems (CCSDS) has recommended a set of these codes
for use in future missions.

The Jet Propulsion Laboratory (JPL) is developing a turbo
decoder for use in the Deep Space Network (DSN) that JPL
manages for NASA. This decoder not only decodes the
turbo encoded data, but also performs time-tagging and
frame synchronization as part of the decoding process. As
opposed to previous decoder implementations, this decoder
is implemented in software that runs on commercial Digital
Signal Processor (DSP) chips. This provides both a quicker
development time and a cheaper production implementation.

This paper is divided into four parts. First, we describe
turbo codes and how they are used. Next, we show the
advantages of turbo codes versus the currently used deep
space error correcting codes. We then briefly discuss the
options for implementing the encoding on the spacecraft.
Finally, we describe the design and implementation of the
turbo decoder that is being developed by JPL.

2. DESCRIPTION OF TURBO CODES

Turbo codes are block codes. That is, the encoding is done
on one block of data at a time. A transfer frame (as defined
by [2] and shown in Figure 1) is the basic block. As part of
the transfer frame, the 16-bit Frame Error Control Field
(FECF) at the end of the frame is required; the FECF is a
Cyclic Redundancy Code (CRC). After the encoding is
done, the frame synchronization marker is attached to the
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beginning of the block. This is different than the sequence
for the concatenated convolutional / Reed-Solomon
encoding that is currently done for deep space systems. In
that case, the transfer frame is Reed-Solomon encoded
(which is a block code), has the frame synchronization
marker appended, and then is convolutionally encoded.
Figure 2 compares the two sequences.

16-bit CRC that is used after the turbo decoding to detect
remaining bit errors. When used as a frame "goodness"
indicator, the probability of an erroneous frame being
accepted as a good frame is very small (approximately the
BER divided by 2'®, or 1.5x10”° BER). The next revision of
the turbo encoding recommendation [3] will recommend
that the FECF always be used with turbo encoding.

DATA » REED- »| FRAME o conv. » TO
SOLOMON MARKER CODE MODULATOR
CONVOLUTIONAL/REED-SOLOMON
TURBO
DATA —] CRC »| TURBO »| FRAME » TO
CODER MARKER MODULATOR
Figure 2 Coding Sequences

The stages in generating the output data stream are
described below.

2.1 Frame Error Control Field

One feature of the Reed-Solomon coding is its use as a final
"good frame/bad frame" indicator. The decoder either
corrects the frame or indicates that it cannot decode the
frame. The probability of its making an error in that process
is very small (approximately the Bit Error Rate (BER) of the
code divided by 16!, or 4.8x10™"* BER), so it can be used as
a reliable frame "goodness" indicator.

Unfortunately, by itself, a turbo code does not have that
property. Its error floor on the decoded frame is higher than
what the Reed-Solomon code provides. However, when
using the optional FECF, as defined in the Transfer Frame
specification [2], this problem is alleviated. The FECF is a

2.2 Encoding Algorithm

Turbo encoding is very straightforward. It uses two
constraint length 4 convolutional codes to generate the
encoded symbols. The process is as follows:

The transfer frame is input to the encoder. There are four
frame sizes defined: 1784, 3568, 7136, and 8920 bits (a fifth
frame size, 16384 bits, is defined, but the encoding
parameters have yet to be specified). Note that the frame
sizes correspond to the Reed-Solomon frame's data
allocation (the same amount of data is sent per frame). The
frame of data (of length k bits) is input to one of the
convolutional encoders. An interleaved (permuted) version
of the data frame is input to the second encoder. For a code
rate of 1/n, the original bit and »n-1 coder tap outputs are
output as the encoded symbols (this means that the
unencoded bits are available, if necessary). The CCSDS



recommendation defines turbo codes for n equal to 2, 3, 4,
and 6. After the & bits are clocked into the encoders, four
flush bits are input; these flush bits clear out the coder
memory (also known as trellis termination). Thus, for a k&
bit frame, we get n(k+4) symbols output. Figure 3 shows
the turbo encoder structure and Figure 4 shows the
interleaving concept.

The interleaving is a fixed sequence, which is on a bit-by-bit
level (as opposed to the Reed-Solomon interleaving on a
byte-by-byte level). The interleaving is described
algorithmically below (as excerpted from [3]):

First express k as k=kk,, where k; equals 8.

Next do the following operations for s=1 to s=k to
obtain permutation numbers 7(s), where s indicates
the sth bit input to the second (interleaved) encoder
and n(s) is the bit number in the original frame. In
the equation below, | x | denotes the largest integer
less than or equal to x, and p, denotes one of the
following eight prime integers:

p1=31
p2=37
p3=43
p4:47
ps =353
Ps =59
p7=61
ps =67

(s—1)mod2

-
|

k
(19i + 1) mod;1

tmod 8 +1
(psj+21m) mod k,

s) = 2(t+c%‘ +1)-m

q =
' =

The symbol outputs are shown in Figure 3. For every input
(either an input bit or a flush bit) to the shift registers, »
symbols are output. The output sequence is from top to
bottom in the figure (e.g., for rate 1/6, the output sequence is
Oa, la, 2a, 3a, 1b, 3b).

2.3 Pseudo Randomization

If sufficient data transitions (which are required to lock up
the receiving system) are not guaranteed, either by the
modulation scheme or the data stream, then the CCSDS
recommends that a Pseudo Randomizer be used on the
encoded data. This means that a pseudo noise (PN)
sequence is exclusive-ORed bit by bit with the encoded

data. The PN sequence that is used is a 255-bit length
sequence, which repeats as it is cycled through the encoded
block. The sequence is defined by the following generator
polynomial:

hx)=x+x"+xX+x +1

The sequence generator is always nitialized to the all-ones
state for the beginning of each encoded block.

Although it is currently an option, it is expected that, in the
next revision of the standard, pseudo randomization will be
required.

2.3 Frame Synchronization Marker

Once the frame is encoded, a frame synchronization marker
must be applied. This is similar in concept to what is
currently done with the Reed-Solomon encoding. The only
difference here is that the encoded block is already in the
symbol domain, so the frame marker must be applied in the
symbol domain. Thus, the 32-bit marker is appended as a
32n-symbol marker (e.g., 96 symbols for rate 1/3, 192
symbols for rate 1/6). The markers for the different code
rates are defined in [3]. If pseudo randomization is used, the
synchronization marker is not exclusive-ORed with the PN
sequence.

3. ADVANTAGES OF TURBO CODES

There are three main advantages to using turbo codes: a
performance gain when compared to the other codes,
compliance with the CCSDS, and a reduction in the decoder
complexity. Each is discussed below.

3.1 Performance Gain

The performance of a code can be judged by the ratio of the
energy-per-bit to the noise spectral density (Ey/N,) needed
to achieve a desired probability of error (P,); P, is also
known as the Bit Error Rate (BER). The lower the E,/Nj
required for a given P, the better the code's performance.

Figures 5 and 6 provide a comparison of the two standard
codes currently used for deep space and two of the new
turbo codes. The current codes are the constraint length 7,
rate 1/2 convolutional code (denoted as the (7, 1/2) code),
concatenated with the (255, 223) Reed-Solomon code, and
the constraint length 15, rate 1/6 (15, 1/6) convolutional
code, also concatenated with the (255, 223) Reed-Solomon
code. The turbo codes plotted are the rate 1/3 and rate 1/6
codes. Figure 5 compares the performance for frame sizes
of 1784 bits, which corresponds to a Reed-Solomon code
interleave factor of 1. Figure 6 provides the comparison for
a frame size of 8920 bits, which corresponds to a Reed-
Solomon interleave factor of 5. As can be seen, for the long
frame at a BER of 10, the rate 1/6 turbo code provides
approximately 0.8 dB improvement over the (15, 1/6)
concatenated code and the rate 1/3 code provides a 0.4 dB
improvement. Comparing the (7, 1/2) code with the two
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turbo codes, we see a 2.7 dB improvement for the rate 1/6
turbo code and a 2.2 dB improvement for the rate 1/3.

3.2 CCSDS Compliance

The CCSDS provides recommendations for telemetry
processing. By using a code that is approved by the
CCSDS, the possibility of inter-Agency cross support is

enhanced. For example, the European Space Agency (ESA)
is building a turbo decoder to support the Rosetta mission.
Any ESA antenna that is used to support Rosetta could be
used to support NASA missions that use turbo codes. On
the other hand, the (15, 1/6) codes were never included in
the standard by the CCSDS and there are no antennas
outside of the DSN antennas that support them.
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Figure 5 Code Performance (1784 Bit Frames)

3.3 Decoder Complexity

The complexity of the decoder for convolutional and turbo
codes can be estimated by the number of trellis edges which
must be evaluated per output bit.  The (15, 1/6)
convolutional code has 2'* states and 2" edges per trellis
section. When decoded with the Viterbi algorithm by the
DSN's MCD III, each edge is involved once in the Add-
Compare-Select operations, so we assign this system a
complexity of 2"° = 32768.

The CCSDS turbo codes are constructed from a pair of
convolutional codes, each with 2° edges per trellis section.
Turbo decoding uses the more complex Bahl-Cocke-
Jelinek-Raviv, or "forward-backward" algorithm [4], which
involves each trellis edge three times. This gives a
complexity of 96 per half-iteration, so a turbo decoder
which performs ten iterations on every block has a
complexity of 1920.

By this measure, decoding a CCSDS turbo code is about 17
times less complex than decoding the (15, 1/6)
convolutional code. A more accurate complexity
comparison can be made when the decoder technology is
specified. When using Digital Signal Processors, the
"forward-backward" computations are nearly twice as

complex as the Viterbi computations, so the true complexity
reduction is about a factor of 10.

What this means is it is simpler to build a turbo decoder
than a decoder for the (15, 1/6) code. This is what allows
the turbo decoder to be implemented as software on
commercial DSP boards, instead of the costly custom
Application ~ Specific  Integrated  Circuit (ASIC)
implementation that was required for the MCD IIL.

4. TURBO ENCODING

Obviously, to take advantage of the turbo codes, the
encoding function must be implemented on the spacecraft.
Below we talk about the several options that a spacecraft
implementation can chose from.

4.1 Spacecraft Transponding Modem

The Spacecraft Transponding Modem (STM) is a new
transponder that has been developed at JPL for use by
missions after 2003 [5]. Among its features is a frame level
telemetry interface. The STM performs all of the encoding,
including turbo encoding. Two of the rates are supported,
1/3 and 1/6, and two of the frame sizes are supported, 1784
and 8920. Any mission that uses the STM automatically
gets turbo encoding capability, along with the other codes
(convolutional and Reed-Solomon).
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One caveat must be mentioned about the current version of
the STM's turbo implementation. When the STM digital
ASIC was designed, the CCSDS had not yet reached a
consensus on the code implementation, so the developers
used what was the current proposal. Afterwards, the code
definition changed slightly, making the STM non-compliant
with the CCSDS (though this is not a problem for the turbo
decoder that will be installed in the DSN). It is expected
that when the ASIC is implemented in a radiation hardened
process, this problem will be corrected.

4.2 Software

The turbo encoding algorithm is relatively straightforward
to implement in software on a spacecraft. All there is to it
are the algorithms for the interleaving and the shift registers.
C-language software has been developed and is available for
use. It is hoped that this software, or a version of it, will be
made available in the future by the CCSDS, as a method for
validating an encoder implementation.

4.3 Hardware

The turbo encoding function can also be implemented in
hardware, either in a Field Programmable Gate Array
(FPGA) or in an ASIC. The function can be implemented
as a stand-alone add-on to a system, or as a part of an
integrated telemetry solution.

For example, the X2000 project at JPL is implementing an
interface assembly, called the System Interface Assembly
(SIA), for interfacing from the PCI bus to either the STM or
the Motorola Small Deep Space Transponder (SDST).
Since the SDST does not have turbo encoding capability,
the SIA will have the encoding function included (also
included will be the Reed-Solomon encoding - the SDST
provides the convolutional encoding); in other words, using
the SIA, the SDST string will have a frame level telemetry
interface like the STM interface. The SIA implements the
turbo encoding function as part of a general purpose
telemetry processing ASIC.

5. TURBO DECODING

On the receiving side, the turbo decoder takes 8-bit
quantized symbols from the receiver and produces the
decoded bits, along with time-tag information. The process
is described below.

5.1 Description

The turbo decoder actually encompasses several functions:
time tagging, frame synchronization, pseudo
derandomization, turbo decoding, and CRC checking. More
detail is available in [6].



Time tagging is accomplished by counting the cycles of the
10 MHz reference signal, using a 1 pulse per second (pps)
timing reference to zero out the count (the 1 pps occurs on
the second boundary). Each symbol clock, which clocks the
symbol into the decoder, latches this count. This process
gives a 24-bit count of the 0.1usec of the current second.
The I/O processing of the decoder adds the current second
to the count. Thus, each symbol has a time tag associated
with it.

Next, frame synchronization is performed. The frame
synchronizer searches for the frame synchronization marker
that was appended to the coded block. The frame
synchronizer checks for both normal and inverted polarity in
the marker; if it detects the inverted polarity, the encoded
block is marked for inversion before being sent to the
decoding task. The synchronizer can buffer a minimum of
four frames. This allows the system to acquire
synchronization and then apply it backwards to the previous
frames, reducing loss of data during the lock up period.
Also, due to the fact that the synchronization search is done
in the symbol domain (as opposed to the bit domain as has
always been done for convolutional/Reed-Solomon coding),
the SNR that the synchronizer operates at is lower; this
requires that multiple frames be summed to achieve high
enough SNR for determining synchronization.

The synchronized block is passed to the decoder element,
along with a flag indicating whether or not the block is
inverted. Unlike the convolutional/Reed-Solomon codes,
turbo codes are not transparent; the inversion of a codeword
is not a codeword. So, if indicated, the decoder must invert
the block prior to decoding. Also, if pseudo randomization
was applied to the codeblock, it must be removed.

The turbo decoder itself is an iterative decoder. Each of the
two codes (non-interleaved and interleaved) are alternately
decoded, with the results being passed back and forth
between the two. Eventually, the decoder produces an
output. The decision on when to stop iterating can be
achieved either by performing a fixed number of iterations
or by using a metric to determine that the decoder has
converged to a result. These methods are described in the
next section.

Since the decoder operates on blocks (frames), higher speed
can be achieved by having multiple decoder elements. The
total speed of the decoder is the product of the number of
decoder elements and the speed of an individual element.
The current requirement for the first turbo decoder
implementation is a 365 kbps rate.

The turbo decoder is implemented on commercial Digital
Signal Processor (DSP) boards. There are two boards, each
with four Texas Instruments (TI) TMS320C6000 family
DSPs, giving a total of eight DSPs for the task. The design
provides a resource allocation of one DSP to handle the high
rate symbol input and time tagging, one to handle the frame
synchronization, one to handle the control of passing the

blocks to and from the decoder elements and to the system
output, and five DSPs for the actual decoder elements.
However, the prototype development indicates that the
symbol input, frame synchronization, and control processing
only require a total of two DSPs, allowing for a sixth DSP
to be allocated for decoding.

5.2 Decoder Speed

Decoder speed has several potential bottlenecks: the symbol
input, the frame synchronizer, and the decoder elements.
All of the processing are functions of the DSP clock speed.
Current development is on 200 MHz boards; all of the
numbers quoted in this section are for these boards.

Input rates of 16 MHz have been successfully demonstrated.
This would give a symbol input rate of 16 Msps, which
translates to 2.67 Mbps for a rate 1/6 code. It is expected
that higher speed processors will be able to handle higher
rates, up to a maximum input rate of 26.4 Msps (the
maximum output rate of the receiver). However, even at the
current speed, the symbol input will not be a bottleneck.

The frame synchronizer must be run in serial with the data
stream (as opposed to the parallelism that can be achieved
with the decoder elements). Current projections from the
prototype indicate that it runs at a rate of 4.5 Msps for the
worst case (192 symbol frame marker and an 8920 bit
frame). This corresponds to a bit rate of 750 kbps for a rate
1/6 code. This will increase with faster speed processors.
In addition, if a higher throughput is needed, there are some
additional tricks that can be done for higher symbol rates.

The decoder elements are the main bottlenecks in the speed
equation. There are three ways to increase the speed of the
decoding. First, the processor speed can be increased; the
decoder speed is basically linear with the processor speed
(doubling the speed doubles the decoding rate). This is
definitely a viable option; as mentioned earlier, while the
current development has been done on 200 MHz DSPs, 300
MHz DSPs are available, and TI has promised a 1 GHz DSP
in the future. Secondly, more DSPs can be added to the
system.

The final way to increase the decoding rate is to use
stopping rules in the decoding process. As described earlier,
the decoder is an iterative process that can run for a fixed
number of iterations, or can be stopped, when convergence
is detected. The method for determining the convergence is
called the stopping rule. Stopping rules are a method of
determining, after every iteration, whether or not the
decoder has converged to a solution. Once the decoder
converges, the block is output and a new block is accepted
for processing. On the average, this is expected to increase
the overall average speed of the decoder by about a factor of
two, versus using a fixed number of iterations (currently, 10
iterations are done). These stopping rules are currently
being investigated [7].



6. USAGE ISSUES

In addition to the implementation questions, there are other
issues that affect how a mission would use turbo codes.
They are discussed below.

6.1 Loss Models

Before the symbols reach the turbo decoder, they are
demodulated from a carrier and subcarrier. These processes
have losses that degrade the signal. Models for these losses
are being developed.  Preliminary results have been
published [8] and been incorporated in [9]. These models
allow a mission to design a link using turbo codes. The
work is continuing.

6.2 Data Output

The data blocks are output to the project as Standard
Formatted Data Units (SFDUs). The format is provided in
[10]. The SFDU format is a standard format, based on
CCSDS recommendation [11].

7. IMPLEMENTATION STATUS

A prototype has been developed and the implementation
work for installing into the DSN has started. The status is
discussed below.

7.1 Prototype Status

A two 4-DSP board implementation of the turbo decoder
has been developed under the Telecommunications and
Mission Operations Directorate (TMOD) Technology
(TMOT) program. This decoder has been successfully
interfaced with the DSN's Block V Receiver (BVR) in the
Telecommunications Development Lab (TDL). The
processor speed is 200 MHz. It implements the symbol
input, the fractional time tagging, the frame synchronization
and six decoder elements. The decoder element speed is
about 54 kbps (no stopping rules have been implemented -
10 iterations are done), for an aggregate rate of 324 kbps.
Work is under way to implement the stopping rules. It has
already reached its initial goal of demonstrating a 250 kbps
decoding rate. Preliminary BER testing shows agreement
with theory.

7.2 Implementation Plan

The turbo decoder will be installed into the new Downlink
Tracking and Telemetry (DTT) subsystem that is being
delivered as part of the DSN's Network Simplification
Project (NSP). Specifically, the decoder boards will be
installed in the new Telemetry Processor (TLP) and
controlled by the Downlink Channel Controller (DCC).
This equipment will be installed in the DSN in the 2002-
2003 time frame.

The decoding capability will be operational at all sites by
October 2003. Implementation across the DSN will be
staggered over the year 2003, so capability to support

missions will be in place at some antennas before October.
Full compatibility testing capability will be available in
January 2003 and limited compatibility testing will be
available prior to that date, using prototype and first
production units.

8. CONCLUSION

The turbo decoder being developed at JPL for deep space
missions has been described. This decoder allows for
missions to use the new CCSDS turbo codes, which provide
up to 0.8 dB improvement over the best coding that is
currently used. The initial implementation will support at
least 365 kbps and will be available for use at all DSN
antennas by October 2003.
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